Category Archives: COMPLETE GUIDE TO SEMICONDUCTOR DEVICES

IMPURITY DIFFUSION COEFFICIENTS

TEMPERATURE ("C)

IMPURITY DIFFUSION COEFFICIENTS

TEMPERATURE (°С)

IMPURITY DIFFUSION COEFFICIENTS

TEMPERATURE (°С)

Подпись: TEMPERATURE (°С) IMPURITY DIFFUSION COEFFICIENTS

(b)

FIGURE D10.1

Impurity diffusion coefficients in (a) Si (I = (After Refs 1-3)

(c)

I, S = substitutional), (b) Ge, and (c) GaAs

[1]s2

[2] 4

ELECTRIC FIELD ST (kV/cm)

[3] Anodically grown oxide, in plasma or in solution.

inversely proportional to frequency, a capacitor can block DC signals while being able to couple AC signals. It can be used to bypass components at high

[5] L m

when carriers are in the mobility regime, velocity saturation regime, or ballistic regime, respectively. These equations assume that there is negligible barrier limiting the injection of carriers. In the case of an SIT, the barrier created by the gate bias controls the onset of the SCL current. In other words, SCL current starts when the 0* is lowered by VD to approximately zero. Because of this, VD in Eqs. (24.13) to (24.15) has a threshold value and should be replaced by (VD + aVG) where a is another constant similar in nature to 77 and 0.26 With this substitution, the SCL current becomes a function of Vq. Also, comparing Eq. (24.13) to Eq. (24.12), one can now see more clearly the fundamental difference between an analog transistor and an SIT. As discussed by Nishizawa, in an analog transistor, the SCL current does not have an exponential

[6] J I Nishizawa, E Iwanami, S Aral, M Shimbo, K Tanaka and A Watanabe, “Low-power SITL IC,” IEEE J Solid-State Circuits, SC-17, 919 (1982)

[7] J I Nishizawa, T Tamamushi, Y Mochida and T Nonaka, “High speed and high density static induction transistor memory,” IEEE J Solid-State Circuits, SC-13, 622 (1978)

[8] A Yusa, J 1 Nishizawa, M Imai, H Yamada, J I Nakamura, T Mizoguchi, Y Ohta and M Takayama, “SIT image sensor Design considerations and characteristics,” IEEE Trans Electron Dev, ED-33, 735(1986)

[9] Fiber-optics communication: An LED can be the light source in optical-fiber communication. The structure for a surface-emitting LED is shown in Fig. 47.7. Edge-emitting LED can also be used in this application. For

ION-IMPLANTATION RANGES AND STANDARD DEVIATIONS


(D9.1)

Подпись: (D9.1). Dose per area N(x) = = exp

2A R2

Подпись: 2A R2J27T&R

TABLE D9.1

Ion implantation projected range (Rp) and standard deviation (ARp) into Si.1

ANTIMONY

ARSENIC

BORON

PHOSPHORUS

ENERGY

RP

ARp

RP

ARp

RP

ARp

RP

**P

(keV)

frim)

(^m)

(^m)

(nm)

(M-m)

(jim)

(im)

(M-ni)

10

0.0088

0.0026

0.0097

0.0036

0 0333

0.0171

0.0139

0.0069

20

0.0141

0.0043

0.0159

0.0059

0.0662

0.0283

0.0253

0.0119

30

0.0187

0.0058

0.0215

0.0080

0 0987

0.0371

0 0368

0.0166

40

0.0230

0.0071

0.0269

0.0099

0.1302

0.0443

0.0486

0.0212

50

0.0271

0.0084

0 0322

0 0118

0 1608

0.0504

0 0607

0.0256

60

0.0310

0.0096

0.0374

0.0136

0.1903

0.0556

0.0730

0.0298

70

0.0347

0.0107

0.0426

0.0154

0 2188

0.0601

0 0855

0.0340

80

0.0385

0.0118

0.0478

0.0172

0 2465

0.0641

0 0981

0.0380

90

0.0421

0.0130

0.0530

0 0189

0.2733

0.0677

0.1109

0.0418

100

0.0457

0.0140

0.0582

0.0207

0 2994

0.0710

0.1238

0.0456

110

0.0493

0.0151

0.0634

0 0224

0.3248

0.0739

0.1367

0.0492

120

0.0529

0.0162

0 0686

0.0241

0.3496

0.0766

0 1497

0.0528

130

0.0564

0.0172

0.0739

0.0258

0.3737

0.0790

0.1627

0.0562

140

0.0599

0.0183

0.0791

0.0275

0.3974

0.0813

0 1757

0.0595

150

0.0634

0.0193

0.0845

0.0292

0.4205

0 0834

0 1888

0 0628

160

0.0669

0.0203

0.0898

0.0308

0.4432

0.0854

0.2019

0.0659

170

0.0704

0.0213

0.0952

0 0325

0.4654

0.0872

0.2149

0.0689

180

0.0739

0.0224

0 1005

0.0341

0 4872

0.0890

0 2279

00719

190

0.0773

0.0234

0.1060

0 0358

0 5086

0.0906

0.2409

0.0747

200

0.0808

0.0244

0.1114

0.0374

0.5297

0.0921

02539

0.0775

220

0.0878

0.0264

0.1223

0.0407

0.5708

0.0950

0 2798

0.0829

240

0 0947

0.0283

0.1334

0.0439

0 6108

0 0975

0.3054

0.0880

260

0.1017

0.0303

0.1445

0.0470

0.6496

0 0999

0.3309

0 0928

280

0 1086

0.0322

0 1558

0.0502

0.6875

0.1020

0 3562

0.0974

300

0 1156

0 0342

0 1671

0 0533

0 7245

0 1040

0 3812

0 1017

TABLE D9.2

Ion implantation projected range (Rp) and standard deviation (ARp) into Si02.‘

ANTIMONY

ARSENIC

BORON

PHOSPHORUS

ENERGY

Rp

A Rp

Rp

**P

Rp

A Rp

RP

**P

(keV)

(*im)

fain)

fam)

fttm)

ftim)

(jim)

(Mm)

(fim)

10

0 0071

0 0020

0.0077

0 0026

0 0298

0 0143

0.0108

0.0048

20

0.0115

0.0032

0.0127

0.0043

0 0622

0.0252

0.0199

0.0084

30

0.0153

0.0042

0.0173

0 0057

0.0954

0.0342

0.0292

0.0119

40

0.0188

0.0052

0.0217

0 0072

0.1283

0 0418

0.0388

0.0152

50

0.0222

0 0061

0 0260

0 0085

0 1606

0.0483

0 0486

00185

60

0.0254

0.0070

0 0303

0 0099

0.1921

0.0540

0.0586

0.0216

70

0.0286

0 0078

0 0346

0.0112

0.2228

0 0590

0 0688

0.0247

80

0.0316

0.0086

0 0388

0 0125

0 2528

0 0634

0 0792

0.0276

90

0 0347

0 0094

0 0431

O. OI38

02819

0 0674

0 0896

0.0305

100

0 0377

0 0102

0.0473

0 0151

0 3104

0 0710

0 1002

0 0333

110

0.0406

0.0110

00516

0.0164 1

0 3382

0.0743

0.1108

0.0360

120

0 0436

0 0118

0.0559

0.0176

0.3653

0 0774

0.1215

0.0387

130

0 0465

0 0126

0.0603

0 0189

03919

0.0801

0.1322

0.0412

140

0 0494

0 0133

0.0646

0.0201

0.4179

0.0827

0.1429

0.0437

150

0 0523

0 0141

0.0690

0 0214

0 4434

0 0851

0.1537

0.0461

160

0.0552

0 0149

0 0734

0 0226

0.4685

0.0874

0.1644

0 0485

170

0.0581

0 0156

0 0778

0 0239

0.4930

0 0895

0.1752

0.0507

ISO

0.06 О0

0.0164

0.0823

0 0251

0.5172

0.0914

0.1859

0.0529

190

0.0639

00171

0.0868

0.0263

0.5409

0 0933

0.1966

0.0551

200

0 0668

0 0178

0.0913

0 0275

0 5643

0.0951

0.2073

0.0571

220

0.0726

0.0193

0 1003

0.0299

0.6100

0.0983

0.2286

0 0611

240

0 0784

0.0208

0 1095

0 0323

0.6544

0.1013

0.2498

0.0649

260

0.0842

0.0222

0.1187

0 0347

0 6977

0.1040

0.2709

0.0685

280

0 0900

0.0237

0 1280

0 0370

0.7399

0.1065

0.2918

0.0719

300

0 0958

0 0251

0 1374

0 0394

0.7812

0.1087

0 3125

0 0751

TABLE D9.3

Ion implantation projected range (Rp) and standard deviation (ARP) into Si3N4.‘

ANTIMONY

ARSENIC

BORON

PHOSPHORUS

ENERGY

RP

ARp

RP

**P

Rp

**P

RP

(keV)

(H“)

(Hin)

ftim)

aim)

(H»n)

(H»n)

(^m)

10

0 0056

0 0015

0 0060

0.0020

0.0230

0.0ОI1

0.0084

0.0037

20

0.0090

0.0024

0.0099

0.0033

0 0480

0 0 О 96

0.0 О 54

0.0065

30

0.0ОО9

0.0033

0.0 О 35

0.0045

0.0736

0.0267

0.0226

0.0092

40

0.0147

0.0040

0.0169

0.0056

0.0990

0.0326

0 0300

0.0118

50

0.0173

0 0047

0 0202

0.0066

0.1239

0 0377

0.0376

0.0143

60

0.0197

0 0054

0 0235

0.0077

0.О482

0.0422

0.0453

0 0168

70

0.0222

0 006О

0 0268

0.0087

0.О7О9

0.046О

0.0532

0.0 О 92

80

0.0246

0.0067

0 030О

0 0097

0 1950

0 0496

0 0612

0 0215

90

0.0269

0.0074

0 0334

0 0108

0.2О76

0.0527

0.0693

0.0237

О00

0.0292

0 0080

0.0367

00118

0 2396

0 0555

0 0774

0 0259

no

0.0315

0 0086

0 0400

0 0127

0.26 О 0

0.058О

0.0856

0.0280

О20

0.0338

0.0092

0 0433

00137

0.2820

0.0605

0.0939

0 030О

О30

0.0360

0.0098

0.0467

0 0147

0.3025

0.0627

0.О022

0 0321

О40

0.0383

0.0104

0.0500

0 0157

0 3226

0.0647

0.1105

0 0340

150

0.0405

0 01О0

0 0534

00167

0 3424

0.0666

0 1188

0 0358

О60

0.0428

0.0О О6

0.0568

0 0176

0.3617

0.0684

0.О27О

0.0377

О 70

0 0450

0.0О22

0.0603

0.0186

0.3807

0 0700

0.О354

0.0394

180

0.0472

0.0О28

0.0637

0 0195

0.3994

0.0716

0.О437

0 04ОО

190

0.0495

0 0134

0.0672

0 0205

0.4О78

0 073 О

0.О520

0.0428

200

0.0517

0.0О39

0.0706

0 0214

0.4358

0.0744

0.1602

0.0444

220

0.0562

0.0О5О

0 0776

0.0233

0.4712

0.0770

0.1767

0.0475

240

0.0606

0.0162

0.0847

0.0252

0.5056

0.0793

0.1931

0.0505

260

0.065 О

0.0 О 74

0.09О8

0.0270

0.5390

0.0815

0.2094

0.0533

280

0.0696

0.0 85

0.0990

0 0289

0.5717

0.0834

0.2255

0.0559

300

0 074О

0 0О96

0 1063

0 0307

0 6037

0 0852

0.2415

0 0584

ABSORPTION COEFFICIENTS

PHOTON ENERGY hv (eV)

ABSORPTION COEFFICIENTS

FIGURE D7.1

Optical absorption coefficient in semiconductors (After Ref 1)

REFERENCE

1 C Belove, Ed, Handbook of modern electronics and electrical engineering, Wiley, New York, 1986

DEPLETION NOMOGRAPH

Si ——————————— GaAs

DEPLETION NOMOGRAPH

Note Examples are for N ~ 1*1017 cm-3 and y = 4 V There is also a quick way to estimate the depletion width For most semiconductors, for tj/ = 1 VandA^ lxlO15 cm-3, ^happens to be around 1 fim Since Wd<x {tf//N)^{Eqs (El 19)—(El 20)), we can scale from this set of numbers For example, with N= MO17 cm-3, Wd becomes 0 1 jim Changing y = 4 V would then increase the fVdto0 2 jini

INTRINSIC CONCENTRATIONS AND FERMI LEVELS


INTRINSIC CONCENTRATIONS AND FERMI LEVELS

INTRINSIC CONCENTRATION n, (cm"3)

Подпись: INTRINSIC CONCENTRATION n, (cm"3)1019 10‘8 1017 1016 1015 10H 1013 10’2 10"

10’°

I o’

10»

107 106

TEMPERATURE“1 (1000 K)“1 FIGURE D5.1

Temperature dependence of n. for Si, Ge, GaAs, and GaP (After Ref 1)

(a)

100 200 300 400 500 600 700 800 900 1000 TEMPERATURE (K.)

Подпись: INTRINSIC CONCENTRATIONS AND FERMI LEVELS

200 300 400 500

TEMPERATURE (K)

Подпись: 200 300 400 500 TEMPERATURE (K) INTRINSIC CONCENTRATIONS AND FERMI LEVELS(b)

INTRINSIC CONCENTRATIONS AND FERMI LEVELS(c)

FIGURE D5.2

Fermi-level a function of doping and temperature for (a) Si (After Ref 2), (b) Ge (After Ref 3), and (c) GaAs (After Ref 4)

REFERENCES

1 C T Sail, Fundamentals of solid-state electronics, World Scientific, Singapore, 1991

2 W E Beadle, J C C Tsai and R D Plummer, Eds, Quick reference manual for silicon integrated circuit technology, Wiley, New York, 1985

3 A K Jonscher, Principles of semiconductor device operation Wiley, New York, 1960

4 A G Milnes, Semiconductor devices and integrated electronics, Van Nostrand, New York, 1980